e 1999-11
I lll

PB99 157349

M - Merge Volume
: D - Diverge Volume
Conflict Volume =MD

Enhancements of the KRONOS Simulation Package
- and Database for Geometric Design, Planning,
Operations, and Trafiic Management in Freeway
Netwmks/@orﬂdors (Phase Ill '

N'I'IS.

of merTE - —
I Service

) Y|
Sl Ep S u oW W TS N e e N O BN SE v b e b e
: ‘ ,
<

'

Technical Report Documentation Page

1. Report No. 2.

MN/RC - 1999-11

3. Recipient’s Accession No.

4. Title and Subtitle

ENHANCEMENTS OF THE KRONOS SIMULATION
PACKAGE AND DATABASE FOR GEOMETRIC DESIGN
PLANNING, OPERATIONS AND TRAFFIC
MANAGEMENT IN FREEWAY NETWORKS/CORRIDORS
(PHASE III)

5. Report Date

July 1997

6.

7. Author(s)

Dr. Eil Kwon Panos Michalopoulos
Ramesh Kota Sejun Song
Michael Coyle

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Minnesota
500 Pillsbury Drive SE
Minneapolis, MN 55455

10. Project/Task/Work Unit No.

11. Contract (C) or Grant (G) No.
(C) 72077 TOC # 139

. 12. Sponsoring Organization Name and Address

Minnesota Department of Transportation
395 John Ireland Boulevard
St.Paul Minnesota, 55155

13. Type of Report and Period Covered

Final Report 1997

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract (Limit: 200 words)

This report summarizes the final results of the research effort to develop a freeway traffic simulator with the capability to
evaluate freeway operational strategies, such as traffic-responsive ramp metering and high-occupancy vehicles (HOV) lanes.

Researchers first developed an efficient software data structure by adopting a dynamic memory allocation scheme to use the
available memory as efficiently as possible. That work also included modifying the existing macroscopic, segment-based
modeling structure and developing new types of pipeline segments to facilitate detection modeling and further mode]
enhancements. Based on the new segment-based modeling structure, researchers developed a new simulation module to handle
HOV lane traffic flows and extended the simulation procedure for an exclusive HOV lane to handle a network of freeways.

Further, the simulation model also incorporates a new module to emulate the traffic-responsive ramp metering algorithm
implemented by the Traffic Management Center since the 1980s. The new software structure developed in this research allows
the future addition of new metering algorithms without major difficulties. To facilitate the data input process for the expanded
simulation features, a new Windows-based user interface was developed using the Delphi software development tool kit. With
the new user interface, most of the data input process can be done without exiting the main menu screen.

17. Document Analysis/Descriptors

Multi-stage incident
Traffic delay
Interrupted flow

Traffic modeling
Macroscopic simulation
Freeway merging/diverging

18. Availability Statement

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page)

Unclassified Unclassified

21. No. of Pages 22. Price

90

ENHANCEMENT OF THE KRONOS SIMULATION PACKAGE AND DATABASE
FOR GEOMETRIC DESIGN, PLANNING, OPERATIONS AND TRAFFIC
MANAGEMENT IN FREEWAY NETWORKS/CORRIDORS (Phase III)

Final Report

Prepared by

Dr. Eil Kwon
Center for Transportation Studies
University of Minnesota
Tel: 612-625-1371
Fax: 612-625-6381

Ramesh Kota, Michael Coyle and Dr. Panos Michalopoulos
Department of Civil Engineering
University of Minnesota

Sejun Song
Department of Computer Science
University of Minnesota

July 1997

Published by

Minnesota Department of Transportation
. Office of Research Services :
First Floor, 395 John Ireland Boulevard, MS 330
St. Paul, Minnesota 55155

This report represents the results of research conducted by the authors and does not necessarily represent the views
or policy of the Minnesota Department of Transportation. This report does not contain a standard or specified
technique.

The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Trade or
manufacturers’ names appear herein solely because they are considered essential to this report.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

TABLE OF CONTENTS

I. INTRODUCTION

I.1 Background
1.2 Research Objective
1.3 Report Organization

II. DEVELOPMENT OF EFFICIENT SOFTWARE STRUCTURE FOR NETWORK
SIMULATION

II.1 Limitations in the current Kronos software structure
I1.2 Design of new data structure with dynamic memory allocation
11.3 Other enhancements in software structure

III. ENHANCEMENT OF SEGMENT-BASED FLOW MODELING STRUCTURE

I11.1 Limitations in current modeling structure

I11.2 Development of new pipeline-segment types

II1.3 Simulation procedure for new pipeline segments

I11.4 Boundary treatments between two segments with different capacities

IV. DEVELOPMENT OF EXCLUSIVE HOV LANE AND FREEWAY NETWORK
SIMULATION MODULE

V.1 Overview of HOV lane and network simulation

V.2 Development of new freeway data structure for network simulation
V.3 Input/output file structure for network simulation

V.4 Network simulation process

V.5 Testing network simulation module

V. MODELING NON-EXCLUSIVE HOV LANE TRAFFIC FLOWS

V.1 Overview of diamond HOV lane flow simulation

V.2 Modeling beginning and ending segments for diamond lanes
V.3 Merging/diverging between HOV and normal lanes

V.4 Testing diamond HOV lane module

oW

13
15
16
19

23
23
28
29
30

33
33
37
41

V1. DEVELOPMENT OF TRAFFIC RESPONSIVE, AUTOMATIC RATE-SELECTION
RAMP METERING SIMULATION MODULE

VL1 Overview of Mn/DOT traffic responsive ramp metering scheme 43
V1.2 Development of a simulation module for Mn/DOT 80 metering algorithm 46
VI3 Overview of new metering algorithm: Mn/DOT 97 52

VII. DEVELOPMENT OF WINDOWS-BASED USER INTERFACE AND DEMAND
DATA LOADING PROCEDURE

VIL.1 Overview of Windows-based user interface 55
VII.2 Design and implementation of input/output screens with Delphi 56
VIL3 Development of automatic demand data loading procedure 68

VIII. PRELIMINARY STUDY FOR ESTIMATION OF FLOW-DENSITY RELATIONSHIP

VIII.1 Flow-density relationship in macroscopic simulation 71
VIII.2 Development of new flow-density curve data structure 72
VIIL.3 Framework for an automatic calibration for g-k relationships for a given freeway 75

IX. CONCLUSIONS AND FUTURE RESEARCH NEEDS 81

BIBLIOGRAPHY

Table 5-1

Figure 3-1
Figure 3-2
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-7a
Figure 7-8
Figure 7-8a
Figure 7-9
Figure 8-1
Figure 8-2
Figure 8-3

List of Tables

Test results for Diamond HOV lane simulation module

List of Figures

Segment types with lead/lag pipeline in Kronos 8
New pipeline segment types

Test results for network simulation module
Diamond HOV lane starting segment types
Diamond HOV lane ending segment types
Merging/Diverging between HOV and normal lanes
Q-K relationship

Relationship between conflict index and capacity reduction factor

Geometrics and traffic demand pattern for diamond lane module testing

Freeway geometry data input window

Global flow-density relationship data input window
Volume/Occupancy threshold file data input window
Example segment data input window

Example metering period data input window

Example spreadsheet output window for total
Example output contour window

Available options for contour output

Example 2-D output screen

Example 3-D output screen

Structure of automatic demand data loading procedure
General form of flow-density relationship adopted in Kronos
Initialization procedure for g-k curve data

Framework for automatic calibration of q-k relationship

42

14
15
31
34
35
39
39
39
42
57

59
60
61
63
64
65
66
67
69
71
73
76

ACKNOWLEDGEMENTS

This project was sponsored by the Minnesota Department of Transportation. The Traffic
Management Center, Minnesota Department of Transportation, is also acknowledged for its
assistance in providing the data necessary for this study. The views expressed here are those of

the authors and do not necessarily reflect the views of the sponsor.

EXECUTIVE SUMMARY

One of the key elements in improving freeway operations is the ability to assess the effectiveness
of various operational and design alternatives prior to implementation. While simulation methods have
long been recognized as the most powerful tool for such analysis, most existing freeway simulation
software lack the sophistication necessary for the applications requiring reasonably high performance
levels. To resolve the above problems, a personal computer-based, freeway simulation software, called
Kronos, has been developed by the research team in the University of Minnesota with the support from the
Minnesota Department of Transportation (Mn/DOT). This report summarizes the final results of the
current research effort to enhance Kronos as a tool that can be applicable in evaluating freeway
operational strategies, such as traffic-responsive ramp metering and High Occupancy Vehicle (HOV)
lanes. First, an efficient software data structure was developed by adopting a dynamic memory allocation
scheme, so that available memory can be used as efficiently as possible. The existing macroscopic,
segment-based modeling structure was also modified and new types of pipeline segments were developed
to facilitate detection modeling and further model enhancements. While this work was not included in
the original work plan, the inefficiency in the previous modeling structure, where the segment types were
redefined internally to confirm the requirements of the simulation module, was discovered during the
process of developing the traffic-responsive ramp metering module. To prevent excessive complexity in
modeling detectors and to reduce the possibility of the potential error because of the internal type
conversion, a new definition of freeway segment types was introduced and a new simulation procedure for
each new segment type was developed. The newly defined pipeline segments have different internal flow
configurations depending on the types of preceding and following segments. Due to the additional work
involved in this modeling structure modification, the testing of the ramp metering module with the real
traffic data will be conducted later jointly with the Mn/DOT traffic engineers. Based on the new segment-
based modeling structure, a new simulatior.l module to handle HOV lane traffic flows was developed and
the simulation procedure to treat an exclusive HOV lane was extended to handle a network of freeways.
Further, a new module to emulate the traffic-responsive ramp metering algorithm implemented by the
Traffic Management Center since 1980’s has been developed and incorporated into the simulation
module. The new software structure developed in this research allows the addition of new metering

algorithms in the future without major difficulties. To facilitate the data input process for the expanded

simulation features, the enhancement of the existing DOS-based user interface was initially tried.
However, it was soon found out that it would be very difficult to modify the existing user interface
because of the limitations in the DOS-based programming environment. Further, the recent trend strongly
indicates that the Windows operating system has been used as the most popular operating environment for
personal computer-based applications. As a result, a new Windows-based user interface was developed
using the Delphi software as the development tool kit. The new user interface is a full Windows-based
application and most of the data input process could be done without exiting the main menu screen. The
preliminary study to automatically estimate the flow-density relationships for a given section of a freeway
with real traffic data was performed and a framework for an optimal calibration process for the flow-
density relationships was developed using a non-linear optimization routine that did not require the
calculation of derivatives.

Future research needs include the continuous testing and debugging of the new software developed
from this research. . The budget and time limitations in this research did not allow to perform an extensive
testing and debugging of the software. Further, the screen Qesign of the new user interface can be
improved with the feedback from the traffic engineers. Secondly, the traffic models developed and
incorporated into the simulation module need to be continuously tested and enhanced with the real traffic
data from various traffic and weather conditions. The flow-density relationships of the various segment
types under the different traffic and weather conditions need to be studied and a base set of default
relationships can be developed. Finally, an efficient traffic database that can store and manage the traffic
data from the existing detectors needs to be developed, so that the user interface can directly extract the

traffic data from the database and create the demand data necessary for simulation.

Kwon, et.al.

I. INTRODUCTION

1.1 Background

One of the key elements in improving freeway operations is the ability to assess the
effectiveness of various operational and design alternatives prior to implementation. While
simulation methods have long been recognized as the most powerful tool for such analysis, most
existing freeway simulation software lack the sophistication necessary for the applications
requiring reasonably high performance levels. Furthermore, there is practically no integration
between simulation and data management resulting in the time-consuming manual effort to
gather, manipulate and process the data and then analyze the results. In addition, the lack of
efficient, user-friendly interface has forced traffic engineers to spend substantial amount of time
to learn the data input process, which has made the employment of simulation unattractive.

To resolve the above problems, a personal computer-based, freeway simulation software,
called Kronos, has been developed by the research team in the University of Minnesota
(Michalopoloulos, et. al. 1993, Kwon, et. al., 1995). The previous phases of this research have
developed the traffic models to simulate the traffic behavior in the various freeway segments
including multi-stage incidents. A graphical, interactive user interface was also developed under
the MS-DOS environment. The user interface has first introduced the concept of the graphical,
interactive data-input process to traffic simulation and enabled the user to build a freeway section
graphically on the computer screen using the segment icons with a mouse. This research is the
final phase of the ongoing effort to develop Kronos as a tool that can be applicable in evaluating
traffic operations and management strategies, such as traffic-responsive ramp metering and HOV
lanes. Further, there exists a strong need to improve the structure of the existing DOS-based
software, whose complexity and the limitations in the DOS operating environment make any
addition of new features very difficult. For an effective evaluation of various operational
strategies, it is of critical importance to develop a simulation tool with a flexible structure, so that
continuous enhancements and interaction with other applications can be performed without

major difficulties.

Kwon, et.al.

1.2 Research objectives

The major objectives of this research include:
e Development of efficient software structure to handle a large network.
e Development of a Windows-based user interface and traffic demand data loading procedure.
e Development of a new module to simulate the current Mn/DOT real time ramp metering
Strategy.
e Development of a new simulation module to treat HOV lanes.
e Preliminary study for developing automatic, optimal calibration method for flow-density
relationships.
In addition, a new segment modeling structure was developed to address to the problems found
during the development and testing of the ramp-metering module. With the new segment
modeling structure, the initial segment definition by the user for a given freeway remains same
throughout simulation without requiring internal type conversion, which has been done in the
current version. While this work was not included in the work plan, it was needed to
facilitate the addition of new simulation modules, such as real time detection and traffic-
responsive ramp metering. Further, by eliminating the internal segment type conversion with the
new modeling structure, the input data file generation process became simpler and more robust

than the previous one.

I. 3 Report organization

Chapter II develops an efficient software structure adopting the dynamic memory
allocation scheme to handle a large network. = The enhancement of the segment modeling
structure is included in Chapter IIl. Chapter IV develops a new simulation module to simulate
exclusive HOV lanes and a network o% freeways. The modeling of non-exclusive HOV lanes is
described in Chapter V. Chapter VI includes the development of the traffic-responsive ramp
metering simulation module and Chapter VII summarizes the development of a new Windows-
based user interface. The preliminary study for estimating flow-density relationships is
included in Chapter VIII and finally Chapter IX summarizes the conclusions and future research

needs.

Kwon, et.al.

II. DEVELOPMENT OF EFFICIENT SOFTWARE STRUCTURE FOR FREEWAY
NETWORK SIMULATION

I1. 1 Limitations in the Current Kronos Software Structure

The current structure of the Kronos freeway simulation software, which is MS-DOS

based, has the following major limitations:

e Subject to DOS 640 KB barrier,

e Static memory allocation,

o Inefficient data structure with no generic freeway representation.
Further, the user interface has been written with the DOS-based graphical libraries, which are no
longer supported by the Windows-based compilers. The above limitations in the current
software structure severely restrict the expandability of the software for handling a large freeway

network with additional features such as traffic responsive ramp metering and HOV lanes.

640 KB Limitation
The current KRONOS, V8, had attempted to circumvent the 640-KB barrier by using

overlays. Overlaying is a technique in which currently unused functions are swapped to disk to
make room for functions in use. Using this scheme, the software larger than 640 KB can be run
under DOS by keeping track of which functions are needed. Since disk access speed is
substantially slower than that of RAM access, the software based on overlays show significant
performance degrading as well as the difficulties in maintenance. In this research, the entire
code of the simulation module in Kronos was converted to the 32-bit operations mode under the
Windows environment. Further, a new Windows-based user interface was developed using the

Boralnd Delphi Windows tool kit (Borland, 1996).

Static Memory Allocation

All the previous versions of the simulation module made exclusive use of static memory
allocation. In static memory allocation, the size of all the data elements in the source code is
predetermined, e.g., the length of all the on ramps, the maximum number of DXs on a freeway
and the number of weaving sections, etc. By fixing the size of variables statically without
considering the actual geometrics of the freeway section to be simulated, it is possible to waste

the available resource, thereby unreasonably limiting the simulation capabilities. For example,

3

Kwon, et.al.

if the programmer had pre-specified 30 on ramps and 30 off ramps, each 2000 ft. long, it would
be impossible to simulate a case with 29 off ramps and 31 on ramps with the length of 500 ft.

This is due to the fact this case exceeds the predefined maximum of 30 off ramps, even though

30 * 200 DX + 30 * 200 DX = 120,000 units of memory, which is much more than 29 * 50 DX +
31 * 50 DX = 30,000 units of memory. None of the “unneeded” 90,000 units of memory is
available to the 31st off ramp, because it is predetermined that all off ramps are 2000 ft. long, and
that only 30 off-ramps are allowed.

Using static allocation, in order to support one off ramp that is 2000 ft long, all off ramps
must have enough data storage for 2000 ft. So, memory is wasted whenever a 500-ft off ramp is
used, since all off ramps were defined to be 2000 ft. long. That memory is also not available to
any other data element in the program. This inefficient use of memory, when combined with the
640-KB barrier, made it impossible to simulate large freeway networks with many additional

features.

II. 2 Redesign of Data Structure with Dynamic Memory Allocation

The previous versions of KRONOS did not make use of records. Unlike arrays, which
can hold only homogeneous data, records can hold heterogeneous data. This is very useful when
different types of data are strongly related. For example, under previous versions, the following

arrays existed.

float On_Ramp Density[2][MAX NUM_ON_RMPS][MAX NUM_RMP DXS +1],
On_Ramp_ Speed[2][MAX_NUM_ON_RMPS][MAX NUM_RMP_DXS + 1],
MAX NUM_ON_RMPS_Q Size[]MAX NUM_ON_RMPS],
On_Ramp_Capacity(]MAX NUM_ON_RMPS];
int Num_Merging LanesfMAX NUM_ON_RMPS],
On_Ramp_LengthfMAX NUM_ON_RMPS];
These would be accessed as
On_Ramp Density[0][Ramp Num][0] = 15.64;
On_Ramp_ Capacity[Ramp_ Num] = 1500;
So, there is a separate array for each data item associated with an on-ramp and each data array

has its own indexing and naming scheme. When there are large numbers of such arrays, it

4

Kwon, et.al.

becomes very difficult to determine the relationships between the arrays. Records were devised
to address this problem.

Since a single on ramp has a large number of data items associated with, it would be
useful to make this relationship part of the data representation. Using a record, called a structure
in C, this could be declared as

struct On_Ramp_Struct_Type

{float Density[2] [MAX_NUM_RMP_DXSH],
Speed[2][MAX NUM_RMP_DXS+1],
Q_Size[2][MAX_NUM_RMP_DXS+1],
Capacity;

int Num_ Merging Lanes,
Length;
} On_Ramp;
and could then be accessed as
On_Ramp.Capacity = 1500;
On_Ramp.Density[0][0] = 15.64;

In addition, it is then possible to declare an array of 30 On_Ramp structures as follows
struct On_Ramp_Struct Type On_Ramp_Array[30];
A particular on-ramp with index Ramp_Num can be accessed as
On_Ramp[Ramp_Num].Capacity = 1500;
On_Ramp[Ramp_Num].Density[0][0] = 15.64;
The main advantage of using structures is that the relationship between data becomes apparent.
Further, instead of dynamically allocating the entire on ramp arrays separately, the entire
structure can be allocated at once, thus, significantly reducing the coding effort of converting
from static to dynamic allocation. Also, the use of structures helps make indexing much clearer,
since it is obvious which index is for the on ramp itself, and which are for data pertaining to the

particular on ramp.

Kwon, et.al.

Dynamic Memory Allocation

Using dynamic allocation, the programmer doesn’t specify the size of any data element
that depends on the input data set. The program reads the input data set and allocates memory as
needed. So, it would be possible to simulate a case with 120 off-ramps with the length of 500 ft
or 30 with 2000 ftt =~ While dynamic memory allocation makes it possible to use memory

efficiently, it requires additional coding to read data set and allocate memory for each data item.

IL.3 Other Enhancements in Software Structure for Performance Improvements

In addition to the elimination of the performance degradation due to overlays, the
following significant performance improvements were made to the simulation module in this

research:

e Elimination of post-processing of simulation results before entering the output module

o TFaster writes of simulation data to disk

e Elimination of shifting data sets in memory

Efficient Post-processing of Simulation Results

Previously, the simulation module did not produce the output data sets in the format
expected by the output module. As a result, at the end of each simulation, the output module had
to convert the simulation output files into the file format it required. The simulation module now
produces its results directly in the format expected by the output module, so no-post processing is
necessary. On large KRONOS 8 data sets, this improvement alone can save 3-5 minutes of the

output module execution time.

Faster Writes to Disk

When writing the simulation output data to the hard disk, the simulation module used to traverse
the whole length of a given freeway each time it writes the output data, i.e., the speed, flow, and

density data for each DX to the appropriate files. As a result, the procedure looked like this:

e On this freeway

- e Sy iy NN N SE m

il

Kwon, et.al.

e while not end of freeway
e seek for the end of the instantaneous density file
e write instantaneous density for this DX
e seek for the end of the instantaneous speed file
e write the instantaneous speed for this DX
e ..andsoon..
Because disk searching is more time consuming than disk writing, it is much faster to traverse a
given freeway N times, and write -each file completely before going on to the next file, thus
eliminating the disk searching all together. This new approach can be summarized as:
e On this freeway
e while not end of freeway
e write instantaneous density for this DX
e while not end of freeway
e write instantaneous speed for this DX
e ..andsoon..
By processing an entire file once, the disk searching could be completely eliminated. This
resulted in a 15% reduction in simulation time assuming a 15-minute aggregation interval for

simulation output. The shorter the simulation output period, the greater the benefit.

Elimination of Copying Data Sets

The current numerical simulation methodology in Kronos uses the data in the previous
time step to compute the data in the current time step. This resulted in all arrays having a final
time index, i.e., DT, so that we can index density[dx][dt]. If we assume that the previous DT is
dt = 0, and the current DT is dt = 1, then at the end of each DT, we have to copy all of the data
from density[dx][1] to density[dx][0], so that density[dx][current] is available for the next DT’s
simulation. For a large freeway network, it would require a lot of memory copies, thus
substantially increasing the execution time considering the fact that currently DT is one second.

However, if we don’t assign a fixed numeric value to previous and current, we can simply
swap their values, accomplishing the same results.

Old scheme:

Kwon, etal.
DT =t
compute g[all_dx][1], k[all dx][1], u[all dx][1]
copy q[all_dx][1] to q[all_dx][0]
copy kfall_dx][1] to k[all_dx][0]
copy u[all_dx][1] to u[all dx][0]
DT =t+1

New scheme:
DT =t
if previous_dx =0
previous_dt =1
current_dt=0
else
previous_dt =0
current dt=1
compute q[all_dx}[current_dt], k[all dx][current_dt], u[all dx][current dt]
DT =t+1
By simply swapping the index every DT, we can avoid the time consuming copy operation by

simply redefining which DT index is current and which DT index is previous.

Reduction of the Size of Output Files

Previous veréion of KRONOS included extra spaces in the simulation output files, where
the output data is written one item per line. Since the C function “fscanf”, which performs the
file read operations in KRONOS, treats any positive integral number of spaces as one space and
uses CR/LF as the data separator, there is no need to pad the file with extra spaces.

The extra spaces arose from improper output formatting. A floating-point value can be
printed by specifying no formatting, i.c.,

printf("Here is your floating point variable %f", Density)
or by explicitly specifying the field width and the number of decimal places by
width.decimal places such as

printf("Here is your floating point variable %6.2f", Density)

y iy S0 N & W

Kwon, et.al.

which prints the floating point value in a field with a width of at least six, and with exactly two

decimal places.

All of the output files had excessively large field widths, which resulted in padding the
field with leading spaces. To avoid this problem, only the desired number of decimal places was
specified. This produces a flexible field width with the desired accuracy, with no leading spaces,

as shown below.
printf("Here is your floating point variable %.1f", Density)

For large input cases, this resulted in a 10-25% reduction in file size, depending on whether the

file was a speed, density, or flow file.

Replacing Redundant Array Indexing With Local Variables

Another performance improvement came from replacing repeated array indexing with
local variables. The numerical method adopted in Kronos uses a central difference scheme
across 3 adjacent dxs. This bred the notation Prev_DX, Curr_DX, and Next DX in order from
upstream to downstream. Since the density and speed values corresponding to these locations are
accessed repeatedly, performance gains could be realized by replacing array indexing such as

for (Curr_DX =0;
Curr DX <Last DX;
Curr_DX++)
{
if (RHS_Density[0][Current_DX] <= gkcurves[zno][0].kcr)
qofframp = Diversion_Rate[dc] * (RHS_Density[0][Current_DX] *
RHS_Speed{0][Current_DX] - Exit_Demand[dc]) / 100 + Exit_Demand[dc];
else °
qofframp = Diversion_Rate[dc] * (gkcurves[zno][0].qmax -
Exit_Demand[dc])/ 100 + Exit_Demand[dc];
if (RHS_Density[0][Current_DX] <= gkcurves[zno][0] ker)
{
q_avail = RHS_Density[0][Current DX] * RHS_Speed[0] [Current DX];
q_allow1 = gkcurves[zno][0].qmax;
}

else

¢

q_avail = gkcurves[zno][0].qmax;

Kwon, et.al.

q_allowl = RHS_Density[0][Current_DX] * RHS_Speed[0][Current_DX];

}
} /* end of for all dx */

with a scheme such as

Mainline_Kcr = gkcurvesfzno][0] ker;

Mainline_Capacity = gkcurves[zno][0].qmax

for (Curr DX =0;
Curr_DX <Last DX
Curr DX++)
{
K_Curr = RHS_Density[0][Current_DX};
U_Curr = RHS_Speed[0][Current_DX];

if (K_Curr <= Mainline_Kecr) v
qofframp = Diversion_Rate[dc] * (K_Curr * U_Curr - Exit_Demand[dc]) /
100 + Exit Demand[dc];
else
gofframp = Diversion_Rate[dc] * (Mainline_Capacity -
Exit_Demand[dc]) / 100 + Exit_Demand[dc];

if (K_Curr <= Mainline Kcr)
{
q_avail =K Curr * U_Curr;
q_allow! = Mainline_Capacity;
}
else
{
q_avail = Mainline_Capacity;
q_allowl =K_Curr * U_Curr;
}
} /*end of for all dx */

10

Kwon, et.al.

This is a small excerpt of a typical section of code. As can be seen, there are a number of array
variables that are repeatedly accessed in each iteration. Since the program must determine the
index values at run time, and compute the address using base address + index * size of element,
there is run time overhead associated with array indexing. By copying the array value into a
local, unsubscripted variable, the overhead is required only once at assignment to the local
variable, and the local variable can then be repeatedly accessed without the overhead of indexing.

An added benefit is more reédable code. More meaningful local variable names can be
used which describe the process more thoroughly. This greatly improves the readability of the
code, and helps separate the algorithmic description from the data structure implementation.
This is clearly useful should the algorithm or the data structure need to be changed independent
of the other.

The data structure is not woven into every line of the program, and the algorithm is then

less dependent on the structure. This greatly increases the ease of modification.

11

Kwon, et.al.

III. ENHANCEMENT OF SEGMENT-BASED MODELING STRUCTURE

IT1.1 Issues in the Current Modeling Structure

The modeling structure of Kronos is based on the geometric types of freeway segments
and different simulation procedures have been developed for each segment type using a
macroscopic modeling approach. In the current version of Kronos, a freeway is divided into 24
different types of segments and each segment is further discretized into 100-ft increments, called
DXs. Figure 2-1 shows the current definition of geometric segment types used in Kronos 8. As
illustrated in this figure, most segments have leading and/or lagging pipeline segments where
traffic flow either splits from single to two flows or merges from two to one flow. This is to
reflect the different flow behavior at the right or left most lanes associated with the entrance/exit
ramps. For example, drivers usually complete their lane-changing maneuver before they reach
an off-ramp, the flow split in the mainline near an off-ramp can be assumed to happen at the
pipeline portion before the diverging point. Further, the drivers entering mainline from an
entrance ramp try to change the lanes after they passed the merging point between the on-ramp
and mainline. Therefore, the pipeline portion of each segment type has an internal boundary
where a single flow is splited into two flows or two flows merge into one flow.

While these internal boundaries require complicated numerical treatments, in the current
version of Kronos, those internal boundaries have been handled within each segment type, which
resulted in the duplication of the same boundary treatment code at each segment simulation
module. This redundancy has created unnecessary complexity in maintaining and upgrading the
simulation module. Further, to facilitate the connectivity between two adjacent segments, the
current version requires each (segment to start and end with the single flow DX, which has
imposed certain minimum length limitations for each segment type. For example, the simple
on-ramp and a simple weave segments need 2 Dxs both at the starting and ending pipeline
portions. Currently the user interface internally converts a given freeway into the required
segment types, which has been a time-consuming, complex process and often caused run-time
error. Also, this process is not completely transparent to user, as the resulting segment types

could be different from the initial segment definitions the user used to build a freeway on the

13

Kwon, et.al.

screen. Further, the use of single capacity value for each segment sometimes does not allow the

user to apply different capacity values for the short pipeline near a weaving or diverging section.

=
=

v
=

!
b

X
/

Figure 3-1. Segment types with lead/lag pipelines in Kronos 8

14

Kwon, et.al.

II1. 2 Development of new pipeline-segment types

For more efficient treatment of internal boundaries and simplification of the source code

maintenance, a new set of pipeline segment types with various internal flow split configurations

was developed in this research. Figure 3-2 shows the types of pipeline segments developed for

different internal flow split/merge combinations, i.e.,

ONE-TO-ONE-PIPE -
ONE-TO-TWO-PIPE
TWO-TO-ONE-PIPE
TWO-TO-TWO-PIPE

1

One flow in and one flow out
One flow in and two flows out
Two flows in and one flow out

Two flows in and two flows out.

Based on the type of the adjacent segments, an appropriate type of pipeline can be determined by

the simulation module. The use of the new pipeline segment types significantly reduced the

redundancy in the source code by treating the flow split/merge process within the pipeline

segments. Further, it enables the simulation module use much shorter minimum lengths for

freeway segments than those of the current version.

ONE-TO-ONE PIPE

AN

TWO-TO-ONE PIPE

==

=

ONE-TO-TWO PIPE

J
y

V
y

TWO-TO-TWO PIPE

Figure 3-2 New pipeline segment types

15

Kwon, et.al.

IIL.3 Simulation procedures for new pipeline segments

This section describes the flow simulation procedure for each pipeline segment shown in
Figure 3-2. The following notations are used in describing the simulation procedure fore each

segment.

g'.,=Flowinj-1" DX at t
g',,= Flow inj+1" DX at t
k’_,= Density of 1" DX att

K

! .= Density of j+1" DX at t
4., = Flow in mainline region

4.4 = Flow in adjacent region

a. One-One-One:
This is same as the simple PIPELINE segment in Kronos 8. The numerical scheme used
for this segment is as follows;

DT

S OX (@ —q51) Eqn 1

kj’.+1 = %(kj’._1 +ki)+

b. One-One-Two:
In this segment, the flow in j+1% DX is computed as the sum of the flows in its adjacent

and mainline regions.
D1 = Dmain + ag
Gy = MI0(G ey 1 1)
Qmax = Capacity of j+1% DX
Using the g-k curve of j+1* DX, find equivalent density(k},,) corresponding to this total

flow. Density in the mainline region is compared with critical density of the mainline g-k curve

to decide whether q}n belongs to congested or uncongested region of the g-k curve. After

obtaining the equivalent density of j+1% DX, we can apply simple Lax equation as in Eqn. 1 to

determine the density in the current DX.

16

Kwon, et.al.

¢. One-Two-Two:

This DX combination occurs for a flow-split DX, i.e., DX in which a single flow in

previous DX is split into two. We use the same method as described above to determine the

equivalent density(kj’.H) in the next DX. Using this density and the density in the previous

segment, we can determine the density in the current DX using Lax equation (Eqn 1). This
density has to be distributed between the mainline and adjacent portions, based on the quantity of
flow in the two regions.

. . ! 1
Flow in next DX is q/1, = k1 *

Flow-split

Flow in adjacent and mainline portions is determined by the type of segment downstream of
current segmenf. If downstream segment is an on ramp, we distribute the flow equally among the
mainline and adjacent lanes. Number of lanes in the adjacerit region of current segment is same
as the number of adjacent lanes in the next segment. For example, if next segment is a simple

on/off ramp or a simple weave, then number of adjacent lanes is one.

qj+l

x Number of Lanes in Adjacent Re gion
Number of lanes

qadj =

e 20
9 main = qj+1 qadj

If next segment is an off ramp, then exit demand onto off ramp has to be taken into consideration
while calculating g, The following sequence of operations is performed to determine the flow
in adjacent and mainline regions.

if (ki <key)

9 avait = kjt'—l * u;‘—-l

else

9 avait = 9max, j-1

Exit Q = min(exit demand, qayai)

17

Kwon, et.al.

qj+1 - . .
= x Number of Lanes in Adjacent Re gion
Ta = Number of lanes / / &

sy = Max(q 4, Exit_ Q)

t+1
9 ain = qj+1 - qadj

If downstream segment is an exclusive off ramp, only exit demand occupies the adjacent portion.

Gay = Exit_Q

4l
G main = qj+1 ~ g

Using g-k curves of the two regions, we can determine the densities in these regions for

the two flows computed above.

d. Two-One-One:
This combination can occur in the second DX of a TWO-TO-ONE or a TWO-TO-TWO
PIPE segment. First, compute the total flow in j-1*'DX as follows:

t —
qj—l = 4 pain + qadj

g, =min(q,...q;)

Qmax = Capacity of j-1* DX

Using q-k curve of j-1¥ DX, determine the density corresponding to this flow. Density of

mainline region is compared with mainline critical density to decide whether q;._l falls in

congested or uncongested region of the mainline g-k curve. After obtaining the equivalent
density of j-1* DX, we can apply simple Lax equation(Eqn. 1) to determine the density of the

current DX.

e. Two-Two-One:
This combination may occur in the first DX of a TWO _TO_TWO_PIPE or
TWO_TO_ONE PIPE. Using the same procedure as explained in the previous section, compute

t+1

the equivalent density in the previous DX. Apply Eqn 1 to compute the equivalent density k", in

the current DX. From this density, find the total flow in the current DX as k;‘_‘} * u;.fll.

18

Mt N s oy b MR a0 n

Kwon, et.al.

Distribute this total flow among adjacent and mainline regions based on the number of lanes in
each region. Using the g-k curves of the two regions, we can determine the densities in the two

regions corresponding to the two flow values computed above.

f. Two-One-Two:

With the current KRONOS model, this combination can occur only in a TWO-TO-TWO-
PIPE segment. This is only possible if length of the current segment is 3DX. To calculate density
of the current DX, the equivalent densities of the previous and next DXs have to be computed

using the procedure explained in previous cases. Apply the simple Lax equation(Eqn 1) to obtain

density of the current DX.

I11.4 Boundary treatments between two segments with different capacities

The basic numerical scheme adopted in Kronos to simulate traffic flows assumes constant
external conditions for flows, i.e., same flow-density relationships. When two segments have
different flow-density relationshiﬁs, the method caused some numerical error in terms of flow
conservation at the boundary between two segments. To cope with this boundary error problem,
the early version of Kronos 8 used a special scheme called “available-allowable”, where the flow
value crossing the boundary between two segments is determined as the minimum of the

“available flow at the last dx of upstream segment > and the “allowable flow by the first dx of

downstream segment” as follows:

Downstream Capacity

Upstream Capacity

D

hid
>

>Distance

Qua= min (QAVAILABLE: QALLOWABLE)
if (kD > kD_CR)

Qarrowase = kp * up

19

Kwon, et.al.

else
Qaitowable = Qcap ¢ ; capacity of downstream segment
and
if (kv > ky cr)
Quavaitable = Qcap_u 3 capacity of upstream segment
else
Qavawase = ky * uy

where, k, u denote density and speed respectively.

While the above method worked well in conserving the amount of flows crossing the internal
boundary between two segments, it did not properly address the propagation of the shock wave
from the downstream segment. This resulted in the time delay for congestion to spill back
toward upstream segment, which significantly affected the accuracy of the simulation results. In
this research, a new method is developed to address both flow conservation and shock wave

propagation.

Capacity Gradient Method

The new method developed in this research considers continuous capacity variation at the
internal boundaries between two segments with different capacities, while the previous method
assumes discontinuous capacity changes. This method is a compromise between the original
numerical scheme and the previous method by assuring proper propagation of shock wave while
minimizing the numerical flow conservation error at the internal boundaries because of the
different capacities. The new method determines the capacity values of the boundary dxs by
linearly interpolating the capacities of two segments as shown in the figure below. Using the
modified capacity values, the normal numerical method is applied to the boundary dxs to

estimate the traffic parameters.

20

Kwon, et.al.

Downstream capacity

Upstream capacity -

 —

The new method, called “Capacity Gradient Method”, requires additional flow-density curves for
each boundary DX to be stored. =~ When this method was initially implemented in KRONOS 8
without using the DOS extender or dynamic memory allocation, a single g-k curve was
recomputed for each boundary dx every dt. This caused excessive performance overhead, which
resulted in additional modifications for the efficient treatment of the flow-density relationship

data as described in the later chapter in this report.

21

Kwon, et. al.

IV. DEVELOPMENT OF FREEWAY NETWORK AND EXCLUSIVE HOV LANE
SIMULATION PROCEDURE

IV.1 Overview of HOV lane and network simulation

High Occupancy Lanes (HOV) can be classified into two groups depending on the way
they are separated from the normal lanes, i.e., exclusive HOV lane with physical barrier and
diamond lane that does not have any physical separator. The exclusive HOV lanes can be
treated as a separate freeway connected to the main freeway through on/off-ramps. Iz this
research, a new simulation module was developed to treat a bi-directional freeway network
including exclusive HOV lanes. The resulting network module can also simulate a ring road,
which was not possible with the previous versions. Further, a new simulation procedure to
handle the diamond HOV lanes without any physical barrier was also developed and incorporated
into the simulation module. Due to the lack of the real data regarding the traffic demand for

HOV lanes, qualitative testing was performed with hypothetical data.

IV.2 Development of new freeway data structure for network simulation

Freeway data structure in the current version

The current version of Kronos can handle three freeways, i.e., a main freeway and two
merging/diverging freeways to/from the main freeway. = However, the merging/diverging
freeways were squeezed onto the end of the main freeway’s data structure and a single-array was
used by all three freeways. The mainline, merging, and diverging freeways were concatenated

into a single static array as follows:

o it fom +
i Main FW | Merging FW | Diverging FW |
e fom Fmm e +

" If this implementation had used a separate array for each of the freeway types, the resulting

structure would have been:

23

Kwon, et. al.
Fmm e +
| Main FW]
o +
e atatatae bt T +
| Merging FW]
fomm e +
- +
[Diverging FW |
Fmm e +

However, doing this would have greatly reduced the maximum length of the main freeway. This
was all done using static allocation, so three arrays, each 1/3 of the length would have been
declared. As a result, even without any merging or diverging freeway to simulate, the
“unneeded” memory they consumed would be unavailable to the main freeway. This would have
meant that even in the absence of merging and diverging freeways, the main freeway could have
only been about 6 miles long, instead of 18 under the “all in one array” approach. So, the “all in
one” array approach met the goal of efficient memory use, essentially doing a form of dynamic
allocation between the main, merging, and diverging freeways within the limits of the statically
allocated array.

However, the existing data structure is too inflexible to support generic freeway network
topologies. Using this scheme, the per DX flow, speed, and density arrays assumed the
connection structure. The order of data in the array was based on the assumption that only a
main, merging, and diverging freeway would exist. In an arbitrary freeway network, there is no
notion of a main freeway. Also, in an arbitrary network, there may be freeways, which intersect
other freeways multiple times, or even beltways, which intersect themselves. There is no way to
map such a topology into the linear freeway by freeway array, other than arbitrarily allocating the

multiple freeways as shown in the following figure.
fmm—— ottt pmm———— Fmm———- fmmm—— o e d-———- +
| FW O | FW 1 | FW 2 | FW 3 | FW 4 | FW 5 | FW 6|
fomm——— tomm——— e to—mm - e t————— N atatatd +

However, if the freeways are ordered arbitrarily like above, we have lost the assumed connection
structure imposed by the original implementation, so we have no way of knowing how freeway 3

connects to freeway 6, if at all. To be able to handle a network of multiple freeways, it is

24

Kwon, et. al.

crucial to develop an efficient and generic data structure that can represent the relationship

between two connected freeways more realistically.

Generic Freeway Representation

The new data structure developed in this research separates the connection information
from the freeway representation. There are now distinct data structures for each freeway, rather
than one shared by all. In addition, no connection structure is forced on the freeway data
organization. Removing the connection information from the freeway allowed for the idea of a
generic freeway. This generic representation attempts to capture only the geometric descripiion

of the freeway, not the geometric and interconnection information as was previously

- implemented. The main benefit of this is that a generic freeway structure and structure allocator

could be designed without regard for how the freeways were interconnected. Each freeway is
examined in light of its boundaries. A boundary is defined as the point where vehicles enter or
exit a freeway. The list of all possible boundaries includes:

e First DX of the first segment of freeway (entering volume)

e Last DX of the last segment of freeway (exiting volume)

e First DX of all on ramps (entering volume)

e Last DX of all off ramps (exiting volume)
A connection can exist between any pair of boundaries, as long as the flow direction across the
boundary is the same for both sides of the boundary. This means that an exiting flow boundary
has to be connected to an entering flow boundary, and vice versa. Connecting two exiting flow
boundaries (two off ramps fqr example) would produce a connection, which has no place in a

real freeway network. Some example connections are:
e Beltway: Last segment of freeway to first segment of freeway

e Merging Freeway: Last segment of freeway to freeway on ramp

e Diverging Freeway: Off ramp to first segment of freeway

e HOV Freeway: Off ramp to first segment on the upstream end and last segment to on
ramp on the downstream end

e Subsection to Subsection: A single freeway could be broken into logical subsections,

with connections between the last DX of one section and the first DX of the next.

25

Kwon, et. al.

Any connection which meets the constraints of legal traffic direction (exiting to entering or
entering to exiting) and the same number of lanes are allowed. It is also possible to simulate a
network of unconnected freeways. This would be useful for batch simulation of a large number
of freeways overnight, for example. In addition, the support for unconnected freeways also

allows for the simulation of two freeway networks.

Data structure for connection points between two freeways

Four kinds of connections are possiBle between two freeways:
Off Ramp To On Ramp (freeway interconnection)
Mainline To On Ramp (freeway termination/merging freeway)
Off Ramp To Mainline (freeway origination/diverging freeway)
Mainline To Mainline (beltway/ring road)
A connection can occur at any freeway boundary. A boundary is defined as a freeway element,
which has one side, at either flow entry or flow exit, open. This includes the upstream side of the
first mainline segment, the downstream side of the last mainline segment, the downstream side of
any off ramp, and the upstream side of any off ramp.
In the new data structure, a connection is defined by the participating sections as follows:
~ struct Connection {
int Upstream FW_Num,
Upstream_Sec_Num,
Upstream_Sec_Type.
Downstream FW_Num,
Downstream Sec Num,

Downstream Sec_Type,

Type;

The Sec notation is a short hand for Section. Since the value could apply to a segment, an on
ramp, or an off ramp, and each of these is numbered independently, the connection Type is stored

to indicate which data structures are relevant for this connection. Section types are stored to help

26

Kwon, et. al.

ensure that the geometrics to be simulated are the same as the geometrics for which the
connection was connected. This helps to prevent the simulation of erroneous scenarios.

The major improvements provided by the above structure are the two new connection
types. These allow for simulation of ramp to ramp connections, which have typical cloverleaf
type interchanges, and mainline to mainline connections, which allow for simulation of beltways,
which exist in many metropolitan areas. The ‘mainline to mainline’ connection type can also be
used to divide a single freeway into logical subsections that are then connected end to end. In
addition, A network can consist of both connected and unconnected freeways. This allows for
simulation of groups of networks, which is useful for batch simulation.

With the new freeway and connection data structure, it’s now much simpler to check if a
DX is the last DX of a freeway. For example, the logic to check for the last dx of a merging
freeway type looks like this

if ((Current_DX ==FW->Last DX) &&
(Seg->CONNECTED)
)
This new scheme only has to check if this is the last dx and if this segment is connected. Since
only the terminal segments can be connected to other freeways, it is only necessary to check if
this is the last dx of the freeway, and if it is connected to another freeway. This logic is clearer

and more concise.

The new freeway data structure has the following limitations in terms of the number of

freeways and connection points:

30 freeways

500 connections
The first limitation -arises from the maximum number of file handles provided by the installed
Borland libraries. This maximum number of file handles limits the number of files that can be
open at once. This is due to the limitations in the current libraries using static allocation for file
handles. While this restriction can be relaxed if necessary, most practical cases would not
include more than 30 freeways. The second limitation arises from the fact that the input module,

unlike the simulation module, still uses static allocation, so some absolute maximum value must

217

Kwon, et. al.

be defined in the input module. This can also be altered by recompiling the input module with a
more suitable value. Again, it is unlikely that this value will prove to be a limitation in the short

term, but it will be easy to adjust it to any required value within the confines of memory.

IV. 3 Input/Output file structure for network simulation

Under the new scheme, each freeway is treated as a main freeway in the old KRONOS 8
sense. Each freeway has its own set of geometry and demand files (as well as the files necessary
for ramp metering discussed elsewhere). There is also a single connection file that describes the
freeways involved in the simulation case, as well as the connections between them. Since
geometrics rarely change, but a large variety of demand and metering scenarios could be run
against the same geometrics, the new file layout uses separate files for each kind of data for each
network. This is a departure from all previous version of KRONOS which had all of the datain a
single file. The input files for a network include the following files:

* NET Network file specifying freeways in this network, and their

interconnection

* GEO Geometry for each freeway in the network

* DEM Demand for each freeway

* FIX Fix rate metering rates for freeway

* MET Automatic Rate Selection Metering Data for each network

* STA Station data for this freeway

* INC Incident file per freeway

* DET Detector data for this freeway

* ZON Metering zones for this network case

Using this approach, the metering policy, whether fixed rate or Automatic rate selection,
can be modified without changing the geometrics. Likewise, many sets of demand data can be
run against the same geometry without modifying the geometry data file. When tools exist to
convert detector and station data files to demand files, this will be much easier when only the
.DEM file must be created. Under the previous scheme, the main, merging, or diverging freeway
file would have to have been parsed to find the demand data, and then modified to reflect the new

demand.

28

Kwon, et. al.

IV. 4 Network simulation process

Because the freeway data files for a given case could be copied between subdirectories,
the path to the input, output, and case file are passed from the input to simulation module via the
environment variables, rather than hard coded in the network case file. The simulation module
gets the information about the paths to the files from the environment variables before it reads
the network file. The network file contains the data regarding the nurmber of freeways in the
network to be simulated, the filename prefix for each of the freeways for the given network, and
the number of segments of each type on each freeway in the network. Finally, the network file
contains the connection table that identifies the physical connection points between the
boundaries of two freeways.

The simulation module opens the network file, reads the number of freeways in the
network, and immediately allocates that many empty instances of the freeway structure. Once
this is done, the number of segments of each type is read for each freeway, and memory for each
segment’s parameters, except data arrays, is allocated, along with associated on and off ramps.
Finally, the connection table is read, and the connections are mapped into the segment data
structures.

Once the overhead of allocating network and segment structures has been done, the
freeway geometrics are read. Once the geometrics have been read, data arrays of the appropriate
length are allocated for all segment and their associated on and off ramps based on the geometric
information for this case.

After geometrics, connections, and data arrays are set up for all given freeways, we are
ready to simulate the case. We loop through all the freeways in a network, traversing every dx in
each freeway before proceeding to the next. Each freeway can have distinct output options, as
well as simulation result periods. One freeway could have instantaneous and average flow output
every 5 minutes. Another in the same network could have MOE’s and only average flow

calculated every 15 minutes.

Simulation at Freeway Connection Points

The simulation at the connection points between two freeways makes use of the capacity

gradient, if there is a capacity difference between two connected segments, and the regular LAX

29

Kwon, et. al.

method. Each segment or ramp connected, hereafter referred to as a section, has a pointer to the
appropriate “connected DX set at the time the connection table is read. This connected DX
pointer is set for the speed, flow, and density variables during the initialization period to save the
overhead of re-computing it for every DT, i.e., one second. Once all the data relationships

between ramps and segments connected are set up, the simulation at the connection points can be

performed using the simulation procedure for the simple pipeline case.

IV. 5 Testing network simulation module

In this section the network simulation module was tested with a hypothetical ring road geometry.
More rigorous testing with real traffic data will be performed in the subsequent phase of this
research. The beltway consists of three pipeline segments with the total length of 20,000 feet
and the first pipeline segment is connected with the last pipeline segment. A platoon of
vehicles was concentrated near the middle of the freeway at t = 0. Figure 4-1 shows the
simulation results indicating density variation through time. The flow rates are seen to slowly
distribute themselves uniformly over the freeway in time as they continuously loop around the
beltway. Also, the effects of platoon reached to the both boundaries, i.e., the farthest points from

the initial platoon location, at t= 10 minute.

30

Kwon, et. al.

Instantaneous Density vs. Distance vs. Time

70

20

a——*—ﬁvné'éaééﬂéb\i_;‘\;

10 ¢

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000..
12000‘
13000
14000
15000
16000
17000
18000
19000
20000

Figure 4-1 Test results for the network module with a hypothetical example of a ring road

31

Kwon, et.al.

V. MODELING NON-EXCLUSIVE HOV LANE TRAFFIC FLOWS

V.1 Overview of Diamond HOV lane flow simulation

The diamond HOV lanes do not have physical barrier that separates them from the
normal lanes. While drivers are allowed to enter the diamond lane or divert from it at any
location, based on the observation of drivers’ behavior and considering the limitations in the
macroscopic modeling approach adopted in this research, it is assumed that there are certain
merging/diverging points between the diamond and normal lanes depending on the geometric
conditions, i.e., the location of entrance and exit ramps. This assumption is based on the general
behavioral characteristics of drivers, i.e., HOV lane users tend to enter HOV lanes as quickly as
possible. Therefore, the diamond HOV lane is treated as a freeway section with multiple
merging/diverging points interacting with the normal lanes and a set of new simulation
procedures was developed for the beginning/ending and merging/diverging segments between
the diamond and normal lanes. Figures 5-1 and 5-2 illustrate the geometric types for the
beginning and ending segments of the diamond lane section. At the beginning segment, the
diamond lane entry demand needs to be specified by user. Further, for each on and off ramp, the

HOV lane demand component also needs to be provided for the simulation module.

V.2 Modeling beginning and ending segments for Diamond lanes

It is assumed that a HOV lane can only start within a pipeline section or with a lane-add
segment. Similarly, the HOV lane can only end within a pipeline or with a lane drop section. It
is also assumed that the HOV is on the left-hand side of the freeway. As described chapter III,
simulation module internally represents a pipeline segment as one of the four pipeline sections
based on its preceding and succeeding segment types. Therefore, while devising the flow model
for the starting or ending segments, we have to consider all these four pipeline segments and the
lane add/drop sections. Figures 1 & 2 respectively show the valid starting and ending segments
of a HOV region. The following length restrictions have been imposed for each of these

segments.

33

Kwon, et.al.

'X

b. ONE-TO-TWO-PIPE

X
|
;
z E | z
— | |
: »Vi»w-—
|)
i j k | 1 m
l
' X
a. ONE-TO-ONE-PIPE
X
|
!
e = =
—— | i
—— | :
i ko1 m
|
X

¢. TWO-TO-ONE-PIPE

= . | .
. | ——
! =— .
s ==——|=>—
—_— : ! e
i j k | 1 m
|
'X

d. TWO-TO-TWO-PIPE

e. LHS_LANE_ADD

Figure 5-1 Diamond HOV lane starting segment types

Kwon, et.al.

a. ONE-TO-ONE-PIPE

b. ONE-TO-TWO-PIPE

X
- - .
EE——— .
: =:>-=>—
g :
. |
=>-L I
m i j 'k 1
1
|
11X

e. LHS_LANE_DROP

35

Figure 5-2 Diamond HOV lane ending segment types

Kwon, et.al.

The starting and ending pipeline segments should be of at least 5SDX length.

e For HOV starting segment, the HOV region should start at least 2DXs before the end of the
pipeline

e For HOV ending segments, the HOV region should end at least 2DXs after the beginning of

the segment.

Modeling of flow in each of these segments is described in the following. The section x-x in the

figures indicates the boundary between HOV and normal lanes.

ONE-TO-ONE-PIPE:

Figure 1(a) shows the flow pattern in this segment type. The total mainline flow is split
into HOV flow and mainline flow at section x-x. The amount of flow that should be let into
HOV lanes is given as an input to the program. The following procedure describes the method

used to calculate the density of k™ DX.

1. Find the available flow, Qayaitable I k" DX as

if (ky <koi) Qoairi = ki ¥t

else

Qavail,k = Qmax,k
2. Let Opov be the HOV entry demand at the upstream as given by user. Let Opoy our 15 the flow
that should enter the HOV lane.

Orov ou = min (Dt 4 s Ohow)
3. Let Quitow hov is the allowable flow into 1st DX of HOV lane. It is computed as follows:
i (K oy < Ker g nov) Qatiow pov = Ormax Lo
else
Qutiowjov = K po U o
Ohov o = MGy o s Qattow pov)

where
kp.x = Critical density of k™ DX
Opazi= Capacity of k™ DX

36

Kwon, et.al.

ky nov = Density of k™ DX in HOV region
ker.1nov = critical density of 1" DX in HOV region
Omas 1oy = Capacity of " DX in HOV region

4. The remaining of the available flow in k™ DX should go to mainline region. The remaining
flow is

Qremain = Qavail,k - Qhov_out

We have to compute the allowable flow, Quiow,in into mainline region. Actual flow that is
entering the mainline region is computed as

le_out = min(Qremairb Qallow,l,ml)

5. Density in k™ DX for the next DT is now computed using modified Lax algorithm
a1 DT 1
kli : = E(k_] + kk) + —DY(E(QJ + Qk) - (Qhov_out + le_out)

Density Computation for 1" DX in HOV region:

A P ‘ DT 1
kj,h:w = E(kl,hov + km,hov) + _BX_(Qhov_out - _2—(Q1,hov + Qm,hov))

Similar equation can be used for calculating mainline density of 1" DX.

For all other HOV DXs in this segment, the simple Lax algorithm can be used. All other DXs in

the mainline region fall into one of the DX combinations described in chapter IIL

V.3 Merging/diverging between HOV and normal lanes

Each on-ramp area in a HOV region has a predetermined DX which is designated as its
‘HOV merge point’, where the HOV demand flow from this ramp enters the HOV lane.
Similarly, each off ramp segment in a HOV region has a predetermined DX, i.e., ‘HOV diverge
point’, where the exit demand of this ramp leaves HOV lane. The locations of these points are

internally determined by the simulation module using the procedure described in this section.

Figures 5-3 and 5-4 illustrate the interaction between the diamond HOV and normal lanes.

37

Kwon, et.al.

Locating HOV merge and diverge points:
It is assumed that the distance required by HOV demand to enter HOV lane is

proportional to the number of lanes on the mainline freeway (HOV lanes not included). It is
assumed that each lane change operation requires 200 ft which, incidentally, is equal to twice the
DX size in current KRONOS model. Therefore, if there are 'n' lanes in the mainline, the
merging traffic needs to go through "2n' DXs before it could merge into HOV lane. This lane
changing distance is treated as a parameter in the simulation module and different values can be
entered depending on the geometric and traffic conditions. Similar method is adopted for fixing
the HOV diverge points upstream of an off ramp. Due to the limitations of modeling, a DX
cannot be both a merge and diverge point. If there is a contention for a DX for merge and
diverge poinfs, diverging point is given preference and merge point is shifted by one DX
forward. Using this method, the merge and diverge points for each ramp are fixed. These DXs
are determined at the beginning of the simulation and remain unaltered throughout the simulation

run.

Determination of HOV Merge and Diverge Volumes:

The next step after determining the location of merge and diverge points is to determine
the amount of flow that can enter/exit to/from HOV at each of these points. Since each on/off
ramp has its own merge/diverge location, the demand at each of these points can be considered
as the HOV demand on the ramp. The amount of the volume that can enter HOV region at a

given DX is determined by the available space in the HOV.

38

Kwon, et.al.

Diverge Distance

Fig 5-3(a)

L a5
""" E» g “M-l M-Merge Volume
e R DM D - Diverge Volume
g3 | |] Conflict Volume = M+D
M

Merge/Diverge Distance =K * (#of lanes to cross)

K=100ft

ke Kem
Qs = Absolute Capacity of DX
Quq; = Adjusted Capacity of DX

=CREF * g,

Fig. 5-4 Q-K Relationship

CRF

0 o)

CRF - Conflict Reduction Factor
CI = Conflict Index = f{Qyoughs Qeontiict)

Fig. 5-5 Relationship between Conflict Index
Capacity Reduction Factor

39

Kwon, et.al.

This available space is determined as the difference between the jam density and the current
density for this DX in HOV region. Similarly, the amount of flow that can exit a HOV at a
diverge DX is determined by the available space at that DX in the mainline region. It is assumed
that all the HOV entry/exit demand will successfully enter/exit the HOV lane, not necessarily
from the point designated as its entry/exit point. If all the HOV demand of an on ramp cannot
enter the HOV lane at its designated merge point, the balance flow value is carried forward and
is treated as additional entry demand at the next merge point, downstream of the current merge
point. |

The above process is implemented for all HOV merge points. Similarly, if the diverge
demand cannot exit the HOV at a HOV diverge point, the balance flow is extracted from a
diverge point upstream of the current diverge point. This process of determining the flow values
at each merge/diverge points is carried out at every DT interval (= 1 sec) before the simulation is
run for that DT.

The volumes determined in the above step are used while calculating the densities for the
next DT using the normal simulation procedure. The HOV merge volume becomes the
generation flow for the HOV region and dissipation for mainline region. Similarly, the HOV
diverge volume becomes dissipation for HOV region and generation for mainline region.

When mainline region is congested resulting in the failure of entire demand of on ramp to
get into the freeway, it becomes difficult to determine the proportion of HOV volume in the
demand that entered the freeway. If the traffic volume that enters the freeway is less than the
HOV demand, we assume that all the demand that entered the freeway is HOV demand. If it is
more than the HOV demand then we assume that all the HOV demand could get onto the

freeway and the balance is considered as a portion of the normal demand.

Modeling the effects of Lane Changing

Modeling the effects of the lane changing activities on the traffic parameters has been a
challenge to traffic researchers. In this research, it is assumed that the conflicts caused by lane
changing affects the flow-density relationship for the affected area. It is further assumed that
the effects of the lane changing can be quantified as the reduction of the capacity, the maximum
flow at the flow-density curve, for each dx in the lane changing area. This reduction in capacity

is a function of the amount of lane changing volume and the amount of through traffic. Using

40

Kwon, et.al.

these two quantities, a “Capacity Reduction Factor (CRF)" is developed to determine the amount
of capacity reduction because of the traffic conflict. Figures 5-4 and 5-5 illustrate the
relationships between CRF and the flow-density curve. The amount of lane-changing volume in
a DX is equal to the sum of HOV merge and diverge volumes within that DX. The merging and
diverging components in each DX is calculated as follows:

All DXs between a HOV diverge point and its off ramp will have HOV diverge volume
and all DXs between an on ramp in HOV region and its HOV merge point will have HOV merge
volume. The sum of these two components gives us the total amount of conflicting volume (Fig.
5-3). This volume is computed at every DT (1 sec) interval. This essentially means, that the QK

curves of all DXs in HOV region are updated every 1 second.

V.4 Testing the Diamond HOV lane module

The diamond HOV lane simulation module developed in this chapter was qualitatively
tested using an example test section. Figure 5-6 shows the configuration of the test section and
the demand pattern through time. The simulation results are summarized in Table 5-1, which
also compares the expected values at both the diamond HOV lane and normal lanes. As
indicated in the table, the numerical simulation error ranges from 0.8 to 1.5%. Subsequent
phase of this research should conduct further testing with real geometrics and HOV lane demand

data to calibrate the parameters in the model.

41

Kwon, et.al.

A

Test Case used for Qualitative Testing

(not drawn to scale)

veh/hr

Freeway Entrance Demand

- - Onramp Entrance Demand

————— O fframp Exit Demand

(Figures in parenthesis indicate the HOV dem and)

HOV Entrance Demand

1000(200)

Demand Pattern used for this Test Section

Figure 5-6 Geometrics and traffic demand pattern for the Diamond HOV lane module

Table 5-1 Test results for the Diamond HOV lane simulation module

Time in HOV Lane Flow at A-A (veh/hr) Mainline Flow at A-A (veh/hr)

Minutes
Expected | Simulated | %Error | Expected | Simulated | %Error

5 600 591 1.5 1700 1682 1.05

10 600 591 1.5 1700 1682 1.05

15 600 591 1.5 1700 1682 1.05

20 950 937 1.4 2800 2776 0.85

25 950 937 14 2800 2776 0.85

30 950 937 1.4 2800 2776 0.85

42

.

Kwon, et.al.

VI. DEVELOPMENT OF A NEW SIMULATION MODULE FOR TRAFFIC
RESPONSIVE, AUTOMATIC RATE-SELECTION RAMP METERING STRATEGIES

VI.1 Overview of the Mn/DOT traffic-responsive ramp metering scheme

By regulating the volume entering mainline from on-ramps depending on the traffic
conditions in real time, the M/DOT metering algorithm seeks to prevent the congestion and
reduce the accidents. It has been proven that, with the Minnesota algorithm, a sustained flow
rate of 2200 to 2400 vehicles per lane per hour can be achieved for hours (Lau, 1996). This
section overviews the basic concept of the Minnesota algorithm that is based on “metering zone”

and “bottleneck”

Metering zone

A metering zone is defined as one direction of freeway typically three to six miles in
length. The beginning or upstream end of a zone is usually a free-flow area not subject to a high
incident rate. Within a zone there are several metered entrance ramps, a number of exit ramps,
and perhaps one or more non-metered entrance ramps. The downstream end of a zone is at a
critical bottleneck, where the demand to capacity ratio is highest on that freeway zone. The
usual types of bottlenecks include lane-drop locations, major volume entrance ramp areas and

major volume weaving areas.

Zone-based metering algorithm (Mn/DOT 80)

The metering algorithm that has been implemented since early 1980s is built on the basic
concept of equalizing the incoming traffic volumes with those traffic volumes leaving each zone.
The basic equation can be expressed as:

A+U+M+F=X+B (Eqn 6-1)
where,

A = Upstream mainline volume (measured variable)

U = Non-metered entrance volumes (measured variable)

M = Metered local access ramps volume (sum of controlled variables)

F = Metered freeway to freeway ramps volume (sum of controlled variables)

43

Kwon, et.al.

X = Exit ramp volumes (sum of measured variables)

B = Downstream bottleneck capacity volume (constant)
Equation 6-1 can be rewritten as

M+F=X+B-A-U (Eqn 6-2)
The above equation indicates that any measured variation in (X + B - A - U) is equaled by a
controlled variation in (M + F). Therefore, the objective of the metering scheme is to determine
the appropriate values for (M + F) for the measured value of (X+B-A-U) for each metering time

interval.

Target Volumes

Using the historical data measured from the detectors, the balanced form of Eqn 6-2 can
be
derived for each zone after proportional minor adjustments. The values in the balanced
equation are called as target volumes and used as default values when the measurements are not

available.

Metering rates

Each local access metered ramp is assigned six metering rates, which would equate to 1.5,
1.3, 1.1, 0.9, 0.7 and 0.5 times the target volume for that ramp over a five-minute time. On
freeway to freeway ramps, the rates over a five-minute time would be 1.25, 1.15, 1.05, 0.95, 0.85
and 0.75 times the target volume. The selection of which rate to use is based on a comparison of

the measured variables (X+B-A-U) to a series of thresholds as follows;

(X+B-A-U) >

Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6

1.4M +1..2F 12M +1..1F 1.OM+1..02F 0.8M+0.9F 0.6M +0.8F

The six rates are achieved by the use of six red times with the fixed yellow and green times of 1.3

and 0.7 seconds.

44

Kwon, et.al.

Occupancy control

The above algorithm depends on the traffic conditions at each zone bottleneck, i.e., the
location of predefined bottlenecks remain as the controlling locations. However, during unusual
traffic conditions or any incident periods, other locations may become controlling bottlenecks.
In this situation, the occupancy values measured every 30 second increments across all lanes in a
station are used to determine the metering rates for each ramp. Each metered ramp is assigned
detector stations up to three miles downstream for occupancy control. The highest occupancy

measured for one minute at any -station is compared to the following series of occupancy

thresholds;

Measured Occupancy value Rate level
<17% 3
18 4
23 5
> 40 6

If the rate selected based on occupancy thresholds is more restrictive than the volume control

rate, then it will be used for the next 30-second interval.

Turn on/off metering thresholds

The AM peak has a turn on petiod (6:00a.m. - 7:00a.m.) during which ramp meters will
turn on when a restrictive rate 5 or 6 is called for on three consecutive 30 second intervals.
During the turn off time period (8:00a.m. - 9:30a.m.), a ramp meter will turn off when the arrival
rate falls and the ramp empties. bEvery 5 minutes, the ramp volume recorded downstream from
the meter signal is compared to the number of greens displayed during that 5-minute interval.
When the measured volume falls below 90% of the number of greens, then the meter is turned
off. During the ensured metering period, i.e., 7:00a.m. - 8:00a.m., all ramps are metered. ~ The
PM peak has also three parts: the turn-on period (2:00p.m. - 3:30p.m.), the ensured metering
period (3:30pm. - 5:30p.m.) and turn off period (5:30p.m. -7:00p.m.).

45

Kwon, et.al.

VI. 2 Development of a simulation module for Mn/DOT 80 metering algorithm
In this section, a new module was developed to simulate the Mn/DOT 80, traffic

responsive, automatic rate-selection ramp metering strategy.

Modeling traffic sensors

In order to provide on-line ramp metering, it is necessary to implement traffic sensors.

The basic detector type in KRONOS is
typedef struct {

int Detector_ID,

Type,

Lane Num, /* The lane that the detector is in,
* numbered from the right most lane */

Offset, /* The distance in feet from the head of
* the segment to the detector */

STATUS; /* Is the detector producing_valid data,

* producing_invalid data or

* not_producing_data */

boolean = ON_MAINLINE; /* Is this detector on a ramp or

* on the freeway mainline? */

unsigned int Outputs, /* bit field for outputs available from
* detector */
Valid; /* bit field for valid data in detector
* data file */

int Lane Num[MAX NUM_OUTPUT_TYPES],
/* The lane that the detector is in,

* numbered from the right most lane */
46

.

Kwon, et.al.

OffsetMAX NUM_OUTPUT_TYPES,
/* The distance in feet from the head of
* the segment to the detector */
Num_LanesfMAX_NUM_OUTPUT_TYPES],
/* number of lanes occupied by data type */

Num_DXs[OUTPUT_TYPES]; /* number of dxs covered by data type */

/* conversion factor for each data type */

float Conv_Factorf]MAX_NUM_OUTPUT_TYPES];

/* pointer to the parent segment which this detector lies in */

Segment Ptr Seg;

/* array of pointers to dxs */
Sim_Data_ Ptr Sim_DatalMAX NUM_OUTPUT _TYPES],

Station Ptr Station;

Modeling Detector

A detector is responsible for reporting the appropriate data from the correct location on
the freeway. A detector can produce up to 16 different types of data, and each data type can
correspond to multiple contiguous lanes and contiguous dxs. This is a crucial element of the
detector design flexibility. A pneumatic tube counter sums volume across all lanes, but at a
single location. Assume that volume has predefined index of 3, and that the segment in question
has 5 lanes. For a section with a pneumatic tube counter, the volume bit, bit 3, of
Detector.Outputs would be set to 1. (Since this is a single integer being used as a "bit array", and
each bit corresponds to a power of 2, the third bit would equal decimal 8. This would be the

actual valued stored in Detector.Output). The Detector.Num_Lanes[3] would be set to the

number of lanes

47

Kwon, et.al.

covered by the pneumatic tube, 5, and the DetectorNum DXs[3] would be set to 1, since a
pneumatic tube would fall within a single DX.

A video detector, such as Autoscope, poses a different variation on the same problem.

If a video detector produced volume data over the same location as the tube counter, but only
produced density data for the 3 mainline lanes, this could be handled as well. Assume that
density corresponds to index 9. Detector.Output would be set to 29 + 2”3 (setting each bit--one
for volume and one for density). Detector. Num Lanes[3] would still be 5, and
Detector. Num_DXs[3] would still be 1. Detector.Num_Lanes[9] would be set to 3.

In this fashion, any detector type can be represented. A detector can cover many lanes
and many dxs. The current version supports loop detectors which cover one lane and one dx.
Other types can be implemented as necessary.

The Detector structure has a pointer to a segment, the segment which contains this
detector, so that the segment type and number of lanes can be determined by accessing the
segment structure--rather than stored again in the detector structure. In addition, the detector has
pointers that point directly to the DX of the corresponding.data arrays. These pointers are set
once when the detector data is read in, eliminating the need to re-compute the address for each
DT.

The last hurdle to getting the actual data values requires that the array representation be
"undone." In most cases, the simulation data arrays cover more than one lane. It is necessary to
determine the number of lanes corresponding to this segment, and then to compute the number of
lanes worth of data stored in the array based on the segment type. The array data--flow and
density--is then divided by the number of lanes covered by this array to produce the single lane
data corresponding to this detector.

Once the simulated detector value is found, the Station pointer is checked to see if it is
NULL. If it is not NULL, then this detector participates in a station relation, and the appropriate
station aggregation must be performed. If the station's Time - To_Report is true, then the station
report's its results to the parent meters which use it. The meter then computes the new rate based
on the station results. Each station has a Report Counter which is decrement each second.
When the Report_Counter is zero, Time_To_Report is set to TRUE. In addition, each station

has its own Sum_Secs_In_Agg Period. Even though the input module sets the value once for all

48

Kwon, et.al.

stations, future modeling may not take such a simple approach. The station also has a Data array,

with the current aggregated value for each of the detector output data types.

typedef struct {
Station ID Station ID;
Detector Array Detectors; /* The array of detectors in this station */
int Num_Detectors, /* the number of detectors in this
* station */
Agg Counter, /* the counter which tracks time
* until next report */
Num_Secs In Agg Period; /* the length of one aggregation period
* in seconds */
/* the accumulated values for each data type */
float DatalMAX NUM_OUTPUT_TYPES];
boolean Time_To_Report;

} Station;

Defining Zone structure
A Zone can be defined with an upstream station, a downstream bottleneck station, a set of
volume stations, and a set of volume thresholds. The Zone structure is defined below.
typedef struct {
Zone_ID Zone ID;
Station Ptr Upstream_Station, /* pointer to the station which
* counts zone input flow */
Bottleneck Station; /* pointer to the station which
* counts bottleneck volume */
int Num_Volume_Stations,
Num_Volume Thresholds;
Station_Array Volume_Station;

Threshold Array Volume Thresholds; /* array of the volume thresholds
49

Kwon, et.al.

* for the meters in this zone */

} Zone;

Design of Fixed time metering

The simplest meter type is the fixed rate meter. A fixed rate meter has only a Location

and a Rate.
typedef struct {
float Rate;

int Location;

} Fixed Rate;

Automatic rate-selection metering : Mn/DOT 80 algorithm

A ramp meter with the Mn/DOT 80 algorithm and Zone control can be defined as

follows:

typedef struct {
Zone Ptr Zone; /* the zone of which this meter is a part */
int Num_Rates In_Table,

Num_Occupancy_Stations,
Algorithm, /* The algorithm used if it is an ON_LINE
* meter */

Num_Operating_Periods;

Rate Selection Table ARS Table; /* and this is the actual rate */
Station_Array Occupancy_Station;
} Mn/DOT _Using_Zones;

50

E S E E T EE N BN EE Em

Kwon, et.al.

Automatic rate-selection metering without zone control

A third type of meter would use the Mn/DOT80 algorithm, but without Zone control. It is

defined as follows.

typedef struct {

Station_Array Volume_Station,
Occupancy_Station;

int Num_Rates In_Table, -
Algorithm, /* The algorithm used if it is an ON_LINE

* meter */

Num_Occupancy_Stations,
Num_Volume_Stations,

Num_Operating_Periods;

Rate_Selection_Table ARS_Table; /* and this is the actual rate
* gelection table */

} Mn/DOT Not_Using_Zones;
Finally, a Ramp Meter is defined as

typedef struct {
boolean USH\IG_ZONE_CONTROL; /* is this meter operating under

* zone control? */
int Location, /* keep track of the number of detectors */
Type; /* The class of meter (FIXED, ON_LINE) */
Segment Ptr Seg;
float Rate;
/* allocate storage for only one of these 4 types */
union {

Fixed Rate Fixed;

51

Kwon, et.al.

MNDOT Using_Zones MN_UZ;
MNDOT _Not_Using_Zones MN_NUZ;
} Class;
} Ramp Meter;

As described above, in this research, a generic meter data type is defined in the Ramp Meter
structure, and the ramp specific data is stored in a separate structure. The union operator simply
allocates enough memory for the largest of the elements listed within it. In this way, new
structures for new meter types can be designed, and simply included in the union in
Ramp_ Meter.

The above representation of the meter data structure has two advantages. First, it is clear
by inspection which data is needed for each meter type. Second, instead of having many
different arrays of each meter type, the union provides a mechanism for putting data of any meter

type in the same place, which allows uniform access to all meters regardless of type.

VI. 3 Overview of new metering algorithm: Mn/DOT 97

In this section, the modified metering algorithm, called Mn/DOT 97 and currently being
tested in the field by the Traffic Management Center, is described. The Mn/DOT 97 algorithm,
developed by the TMC staff, will be incorporated into the simulation module at the subsequent
phase. The new algorithm is based on the same zone metering concept as the existing M/DOT
80 algorithm, but introduces the new concept of available space at each zone in determining the
metering rates and uses the exit volume data measured in real time. Further, it has the capability

to use the variable capacity values at the bottleneck locations.

52

Kwon, et.al.

A
Bottleneck
Capacity: Bi

Let Mt: Sum of Metering rates for all the ramps metered during time interval t within zone 1
Ft: Sum of Freeway to Freeway metering rates during t within zone i
Ut : Sum of entering volume from all non-metered ramps during t within zone i
Xt: Sum of Exit ramp volume for all the exit ramps during t within zone i
At: Upstream boundary measured volume during t

Bi : Capacity of bottleneck B of zone i

As the previous metering logic,

1) each ramp has 6 predefined rates, i.., red times, and volume and occupancy thresholds.
2) all the metered ramps within a zone have same volume thresholds and volume detector

station, i.e., station A (upstream boundary detector station)

3) every 30 second, two rates are selected with volume thresholds and occupancy thresholds

using the measurements.

]

4) Occupancy control is same as the previous one.

New metering algorithm based on volume measurements

Every 30 second, the system calculates the Vi value with the following measurements:

Vi=Bi-At-Ut+Xt + St
where, St= Sum of all mainline detector within zone i for the following quantity

= > (0d -Ocy), * alpha; * (number of lanes at 1)

53

Kwon, et.al.

Od, = Critical occupancy for detector 1 (Input parameter for detector 1)
Oc; = Occupancy measurements from detector 1 during t interval

alpha= Conversion parameter for detector | (input parameter : default value 1.2)

Bi = Bottleneck capacity (Input parameter for zone boundary detector)

All the values in the above equation is 5-minute values. However,
At, St => 5-min converted volume using 1 minute volume measurement. At is used for next
30 seconds.

Ut, Xt => 5-min measurements used for the next 5-minute interval.

The above Vi goes to the volume thresholds table and one rate is selected.

As with the previous algorithm, the two rates, i.e., volume-based and occupancy-based rates, are
compared every 30-second and the more restrictive rate is selected for the next 30 second
implementation. Further, the volume thresholds for each zone are determined following the

same procedure as with the previous algorithm.

Turn on condition: Every 5 minutes, measure M and F, i.e., sum of total entered volume from
metered ramps and if
(M+F) ;>beta*(B-A-U+X+8),

then turn on all the meters in zone i. beta = input parameter (Default 0.85)

Turn off condition: For each ramp,
Actual volume entered for last 5-min. interval <
gamma * (total metering rate for last 5 minute interval),
then turn it off.

where, gamma = input parameter. (Default value: 0.85).

54

Kwon, et. al.

VIL. DEVELOPMENT OF WINDOWS-BASED USER INTERFACE AND
DEMAND DATA LOADING PROCEDURE

VII.1 Overview of windows-based user interface

Developing a user-friendly environment where the user can easily enter the data
needed for simulation and analyze the output results is of critical importance for
practicing engineers in applying simulation for effective traffic management. The user
interface of the previous version, developed under the MS-DOS environment, has
introduced the new concept of graphical, interactive data input procedure, which has
enabled a user to build a freeway on the screen by combining segment icons with a
mouse. While the user interface of the previous version has many desirable features,
the initial effort to enhance it to support new simulation features, such as ramp metering,
network and HOV lanes, has turned out to be not feasible because of the limitations of
the DOS-based graphical programming environment. In consultation with the Minnescta
Department of Transportation, it was decided to develop a windows-based user interface
and the Borland Delphi software package has been selected as the development tool kit
for the windows-based user interface. Delphi is one of the most powerful, software
development tools for the Windows environment currently available for the PC platform.
It combines visual development with a complete OOP language and allows full access to
the underling Windows API system in a user-friendly way. Using Delphi, it only
requires small amount of code to develop an application that requires hundreds or even
thousands of lines with C or assembly languages. Further, the flexible environment of
Windows makes it possible to combine the user interface with other heterogeneous
programs such as C , C++, HTML, database and GIS software. The rest of this chapter
summarizes the features and the data loading procedure with the newly developed user

interface.

55

Kwon, et. al.

VIIL. 2 Design and implementation of input/output screens with Delphi
The design of the new interface is based on the pop-up menu concept common to
Windows-based applications. However, the data input screens use the multiple hidden

page structure, which makes it possible to enter all the data without exiting the main
screen. Figure 7-1 shows the main geometry input screen where user can build a
freeway by selecting appropriate segment icons in sequence from the toolbox. Currently
20 segment types are available and there is no limitation in terms of the number of lanes
in the on-ramp as long as the total mainline lanes do not exceed eight. Further, the user

can specify the mile point as well as the number of lanes for the first segment.

Global parameter input screen

The global parameters can be entered using “Edit parameter” menu in the main
screen. Figure 7-2 shows the sub-window for the global g-k curve data in the Edit
Parameter window. Figure 7-3 also shows the volume/occupancy threshold data window,
which allows the user to save a particular set of thresholds in the files that can be used for
the ramp metering simulation. The other sub-windows include Simulation Parameters to
input simulation control data, Boundary Conditions for defining the traffic demand data
conditions at upstream and downstream boundaries, and Metering Options to specify
ramp metering control schemes to be simulated. Currently, user can select one of the
three control schemes, i.e., non-metering, Fixed-time metering, and automatic rate-
selection metering. The default option is non-metering and other data screens will show

up when any of the other two options is selected.

Segment data input screen

All the segment specific data can be entered in the segment data input window, which
can be popped up by double clicking each segment . Figure 7-4 shows the geometry data
input sub-window for a weaving section. As indicated in the figure, all the other data,
such as demand and detector location, can be entered without exiting the main screen.
For example, Figure 7-5 shows the input screen for the automatic rate selection ramp

metering data.

56

Kwon, et. al.

KRONOS 9.0

Edit_ Parameters Simulate Network Zone_ Edit Help

Figure 7-1 Freeway geometry data input window

57

Kwon, €t. al.
= KRONOS 9.0 s
E Parameters Simulate Network ,Zone_Edit Help I

E s
H s

Figure 7-2

Global flow-density relationship data input window

58

Kwon, et. al.

KRONOS 9.0

Figure 7-3 Volume/Occupancy threshold file data input window

59

Kwon, et. al.

KRONOS 8.0

File Oytput

Edit_Parameters Simulate Network Zone Edit

Figure 7-4 Example segment data input window

60

Kwon, et. al.

= KRONOS 5.0 B
Eile Output Edit Parameters Simulate Network Zone Edit Help

W GotgErd

Figure 7-5 Example metering periods input window

61

Kwon, et. al.

Output data screen

There are three. types of output in terms of format: spreadsheet, contour and 2-D
graphics. Figure 7-6 shows an example total flow spreadsheet output window, which
includes the total flow value for every 100ft dx for every output aggregation time
interval specified by user. Currently, the following output results are available in the
spreadsheet format:

Total flow

Average lane flow for each time interval

Average lane density for each time interval

Average lane speed for each time interval

Instantaneous average lane flow

Instantaneous average lane speed

Instantaneous average lane density
The contour output screen shows the variation of an output parameter in the time and
distance space using the continuous color scale. Figure 7-7 shows an example contour
screen for the average lane flow. User can also find out the value of the output
parameter in the contour plof for a specific time and distance by moving the lever on the
time and distance axis. Figure 7-7A shows the available output parameters for the

contour plot. Those include

average flow per lane
average density per lane
average speed per lane
total flow

total delay -

average delay per lane
The two-dimensional plot can be drawn for an output parameter selected for the

contour plot. Figure 7-8 includes an example two-dimensional plot for the average lane

flow.

62

Kwon, et. al.

..i6462 4000
16501

6536 4001
4004
6503|4019
6420

Figure 7-6 Example spreadsheet output window for total flow

63

Kwon, et. al.

Time

Figure 7-7 Example output contour screen

64

Kwon, et. al.

Figure 7-7a.

Available options for contour output

65

Kwon, et. al.

Figure 7-8.

Example 2-D graphical output screen

66

Kwon, et. al.

Figure 7-8a Example 3-D graphical output screen

67

Kwon, et. al.

VIL.3 Development of automatic demand data loading procedure

Traffic demand data at the external boundaries for a given freeway section is one
of the key input data absolutely necessary for simulation. = The external boundaries
include all the entrance/exit ramps and upstream as well as downstream segments. In
this research, an automatic demand data loading procedure is developed when user wants
to use the detector readings at each boundary as the demand data. The detector
readings are currently stored in a binary file for each day by the Traffic Management
Center. While the detector data was supposed to be stored in a traffic database, being
developed in a separate project, the status of the traffic database development has not
reached the point where it’s possible to interact with an external application. Therefore,
in this research, the detector data is read directly from the binary files that are transferred
from the Traffic Management Center. Figure 7-9 illustrates the structure of the
automatic data loading procedure, whose core element is the extraction/conversion
module that extracts the traffic data for the detectors at each boundary with the detector
list file given by the user interface. The user interface produces the detector list file that
is used by the simulation module for ramp metering operations. Currently the
extraction/conversion module operates outside of the user interface and will be
incorporated into the user interface in the later phase with the completion of the traffic

database.

68

Operational
- Policy
File

Geometry
Data File

g-k parameter
File

Traffic
Demand
Data
File

Kwon, et. al.
User Interface
Detectof List File
External boundary detectors
Interim check point detectors
Detector
D?ta Boundary
File Data Extraction Detectors
Module Traffic
Data File
Interim
Detectors
Traffic
Data File

Figure 7-9 Structure of the automatic demand data loading procedure

69

Kwon, et.al.

VIII PRELIMINARY STUDY FOR ESTIMATION OF FLOW-DENSITY
RELATIONSHIP

VIIL. 1 Flow-density relationship in macroscopic simulation
The macroscopic modeling approach adopted in Kronos requires the flow-density (9-k)

relationships for each segment in a given freeway as the user-specified input parameter, whose
values substantially affect the simulation results. Figure 8-1 illustrates the general form of a g-k
relationship currently used in Kronos. The g-k curve consists of three functional relationships
depending on the flow region, i.e.,

q=ak : 0<k<=k,

GEaki+tbk+e 1 ky<k<=kq

q=a2k2+b2k+cz : ke <k <=Kkjam

Qmax

qa | - - -

ka k cr kjam

Figure 8-1 General form of flow-density relationship adopted in Kronos

where, aj, b;, ¢; = parameters for each functional relationship,
k. = critical density, kjam = jam density,
(max = maximum flow,

Qs ka = flow and desity values for the upper limit of the linear g-k relationship.

71

Kwon, et.al.

The parameters in the above g-k relationship can be mathematically identified with the given
values of {[(qa, ka), (qmax, ker), (kjam)]} and Kronos requires user to input those values for
each segment. Currently those four key parameter values are determined through a trial-and-
error procedure for a given section of a freeway by comparing the simulation results with thz data

obtained from the loop detectors. This manual calibration procedure has been a time-consuming

process largely dependent upon the expertise of the traffic engineers.

VIII. 2 Development of new flow-density curve data structure

Unlike the previous versions limited by the 640KB memory boundary of MS-DOS, the
new simulation module developed in this research adopts a dynamic memory allocation scheme
and makes a full use of the available memory in a given computer. One of the major benefits
from this improvement is the ability to assign a flow-density (g-k) curve for each dx in all
segments on the entire stretch of a given freeway section. Each g-k curve information is stored
in the g-k structure defined in the simulation module. Each g-k structure variable requires 52
bytes of memory. A dx may need more than one g-k curve structure depending on the flow
configuration. For example, a dx that has two separate flows needs three g-k curves; one for
mainline, one for either right or left-most lane and one for the entire flow. Enormous memory is
required to assign g-k curves for each dx using static mémory allocation. Since many dxs have
common g-k curves, this process wastes lots of memory. By using dynamic memory allocation,
on the other hand, we can optimize the memory allocated to these g-k curves. Using this method,
we can eliminate the need for redundancy. In this technique, instead of allocating one g-k curve
(52 bytes) for each flow region of a dx, we have a pointer variable (4 bytes) pointing to the
corresponding g-k curve in the q-k database. The q-k database consists of all the different q-k
curves that are used for the freeway network that is being simulated. This is dynamically built
before the beginning of simulation, as explained in a later section. Thus using this method, a g-k
curve can be shared by different dxs, thereby, eliminating the redundancy in memory allocation.

Figure 8-2 illustrates the q-k database concept.

72

Kwon, et.al.

QK Curve 1

\ ‘ QK Curve 2

QK Curve 3
\ QK lexrve X
QK Curve x+1

QK Curve n-2
QK Curve n-1
QK Curve n

\ OK Database

Figure 8-2 Initialization Procedure for QK Curve for each DX on Freeway

73

Kwon, et.al.

Building q-k Database:

The g-k database is implemented in the form of a linked list. This list is empty at the beginning

of simulation. In KRONOS, a g-k curve for a flow region is computed for all the lanes in that

region. That is, if a region has ‘n’ lanes, and each lane has a capacity of ‘c’, then g-k for ihat

region is computed for a total capacity of ‘nc’. In KRONOS 9.0, each freeway has global g-k

curve parameters, which represent a one lane g-k. These parameters are used as default for any

segment on this freeway, unless different q-k parameters are specified. The building of g-k

database starts with allocating g-k curves for these global parameters. At the end of this step, we

have 1-lane to 8-lane global g-k curves. Since, these g-k curves may be used by many segments,

they are kept at the beginning of the list so that time required to scan through the list to find a

matching g-k curve is minimized. After this step, for each segment on the freeway, we check to

see if gradient is applied at its upstream and downstream ends. If gradient is not applied, all dxs
of this segment can point to the same q-k curve. If gradient is applied, those dxs which have the
gradient applied, will have different g-k curves. With these parameters, we scan through the list
until a matching g-k is found. If a matching g-k curve is not found, we create another g-k curve
with the current dx’s parameters and append to the existing list. At the end of this phase, we will
have all the required q-k curves for this freeway stored in the q-k database.

The new methodology of g-k initialization based on the database concept has offered
great flexibility to the program and the modeling. For example,

e Each dx has its own g-k curve, the boundary g-k curve between two segments need not be
computed at each DT and hence substantially reducing the performance overhead.

e In KRONOS 8, the capacity gradient was only applied for dxs with one flow. This has
restricted the segment regions over which gradient is applied and also the minimum length
requirements. This limitation has been eliminated and the capacity gradient method can now
be applied between a one-flow region and a multi-flow region. This means that a gradient
can be applied at any segment boundary, including ramp-to-ramp, ramp-to-mainline, which
has greatly helped in the network freeway modeling by allowing the boundaries of the

freeways can have different capacities.

74

Kwon, et.al.

e This also helped to separate the g-k curves of HOV region from the rest of the mainline.

e each dx has its own g-k curve, the program is much simpler. Each dx need not be checked to

see whether it is a gradient dx or not.

VIIL.3 A framework for an automatic calibration for g-k relationships for a given freeway

Determining the best set of flow-density relationships for a given section of a freeway has
been one of the most difficult problems in macroscopic simulation. In this research, a
framework for an automatic calibration of the g-k relationships for a freeway section with a given
set of real traffic data is developed. Figure 8-3 shows the structure of the q-k calibration process
consisting of several major modules. The process starts with the simulation module using initial
set of q-k curves or user defined Q-K curves. The simulation results are used by the error
estimation module to compare with measurements from field data. The overall error is used to
determine if further improvement is needed. If the total error rate is small enough, then the
calibration process stops. Otherwise it goes to the g-k calibration module, which finds a new set
of g-k curves and the input module creates a new set of -k parameter file for the next iteration of
simulation-comparison-adjustment process. The implementation of each individual module in

the framework will be performed in the subsequent phase of this research.

Data extraction module

The data extraction module extracts the traffic data for the detectors specified by user
from the raw detector data file provided by the Traffic Management Center. The user interface
produces the detector list file from the information given by user. Two traffic data files are
created: One for the external boundary traffic data to be used as the demand data for a given
freeway section and the other for the interim detectors that will be used as the check points to

determine the simulation error.

75

Kwon, et.al.

Operational
Policy
File

Geometry
Data File

Detector List File q-k parameter
: File

Detector
Data
File

q-k Calibration
Module

Simulation
Module

. Interim
Data Extraction L Detectors

Module Traffic

\ Data File Error Checking)

Boundary
Detectors
Traffic
Data File

Figure 8-3 Framework for the automatic calibration of flow-density relationships

Error checking module

The error checking module calculates the estimation error by comparing the simulation
results at the check points with the real traffic data collected from the same locations. The
following error indices are to be used to determine if further adjustment of g-k relationships is
needed.

Mean Percentage Difference (MPD) :

MPD = Z [100 * (Measured i - Estimated i) / Estimated i] / N

Mean Absolute Error (MAE) :

MAE = X [Measured i - Estimated i] / N
where, i = check point,

N = number of measured points.

76

Kwon, et.al.

q-k relationship calibration module

Developing an optimal calibration module that can determine the best set of g-k
relationships for a given section of a freeway has been one of the most challenging tasks to traffic
engineers. In this research, an optimal calibration process for the flow-density relationship of
each segment using a least square output error method is developed. It is considered that the gmax
in the g-k curve is the control variable to be optimized and the initial q-k relationship for each
segment can be adjusted with the optimized qmax value. Further, the gmax values for the segments
that do not have detector stations are determined by interpolating adjacent qmax values. The
complex algorithm, a nonlinear programming search routine developed by Box, has been selected
as the optimization procedure. The complex algorithm uses a sequential search technique
without requiring the calculation of derivatives and it has been proven to be effective in solving
problems with nonlinear objective functions subject to nonlinear inequality constraints(Box,

1975). Using this algorithm, the optimal calibration problem can be formulated as follows;

Find qmex, j for each segment
Minimizing C(qmax;) = 100 (0.5 Cq + 0.5 Co) : Performance criterion
where, Cq= Z2 (| qij-aki;)|/aij) /N : Mean absolute error for volume
Co= 3 (]oi;-o(kij)|/o0i;) /N : Mean absolute error for occupancy
where, q; j, 0i j = measured flow rate and occupancy values at time 1 and from location j.
q(k) and o(k) are estimated flow and occupancy values by simulation.

N = Total number of time sequence, i, * Number of segments, j

Overview of the complex algorithm

The complex algorithm finds Q minimizing the nonlinear performance function
C(Q)=100(0.5Cq+0.5Co)
subject to inequality constraints :
Lj <= qmax,j<= Hj
where : Q = a vector for [qmax,1> qmaxs2> » > maxsM]

i=1,2,...N (Tirné sequence of simulation)

77

Kwon, et.al.

j=1,2, ... M (Number of segments)
Lj , Hj : lower and upper constraints of parameters, qmaxs;

Cq, Co : functions of simulated density ki,j

i). For each control variable in the vector Q, generate a starting point based on random numbers
and constraints:
Qmaxj =Lj +R(Hj-Lj) Where Ris a random number of 0 and 1.
i1). Check if the selected points satisfy the constraints. If any constraints are violated by a value
of d which is defined as 0.00001, the point is moved to a small distance inside the violated limit.
ii1). The objective function is evaluated at each point. The point gives the lowest function value is
moved to a location at a distance from the centroid of all remaining points.
Q@mt+l)=a*[Qc -Qm)]+ Qc
where, n : iteration steps
a : reflection factor (a value of 1.3 is recommended)
Qc =[Z(Q(n) - Q(n-1)] / (Total number of points - 1)
iv). If the new point gives lowest function value on next iteration step, it is moved to the location
with one half the distance to the centroid.
Q@+1)=0.5[Qc - Q)]

v). Check if the objective function values at each point are within predefined units, 8, for a

certain number of consecutive iterations, 1. If that is the case then convergence is reached and

program stops. Otherwise it goes back to step 1 for another iteration. The value of convergence

parameter & and n are defined as 0.1 and S.

Determination of qmax; for the segment without detector measurements

Currently, the loop detectors in the Twin Cities’ metro freeways are installed
approximately every half a mile. For those segments that do not have the detector measurements,
the gmax values are determined by interpolating the adjacent qmax’s determined by the

optimization process with the measurements for each iteration, i.e.,

Qmaxj = Amaxsj-1 T (Qmaxj+1 = Qmaxsj-1) ¥ I/ Hj+1)

78

Kwon, et.al.

qmaXaj-l >

"

lits

Qmax,j+1

Figure 8-4 Interpolation of gmax,j

79

Kwon, et.al.

IX. CONCLUSIONS AND FUTURE RESEARCH NEEDS

Performing effective traffic management and improving operational environment requires
the ability to assess the effectiveness of various operational and design alternatives prior to
implementation. This report summarized the final results of the research effort to develop a
freeway traffic simulator that can be applicable in evaluating freeway operational strategies, such
as traffic-responsive ramp metering and HOV lanes. First, an efficient software data structure
was developed by adopting a dynamic memory allocation scheme to use the available memory as
efficiently as possible. The existing macroscopic, segment-based modeling structure was also
modified and new types of pipeline segments were developed to facilitate detection modeling and
further model enhancements. While this work was not included in the original work plan, the
inefficiency in the previous modeling structure, where the segment types were redefined
internally to confirm the requirements of the simulation module, was discovered during the
process of developing the traffic-responsive ramp metering module. ~ To prevent excessive
complexity in modeling detectors and to reduce the possibility of the potential error because of
the internal type conversion, the new definition of the freeway segment types was introduced and
the new simulation procedure for each new segment type was developed. Due to the additional
work involved in this modeling structure modification, the testing of the ramp metering module
with the real traffic data will be conducted later jointly with the MnDOT traffic engineers. Based
on the new segment-based modeling structure, a new simulation module to handle HOV lane
traffic flows was developed and the simulation procedure to treat an exclusive HOV lane was
extended to handle a network of freeways. Further, a new module to emulate the traffic-
responsive ramp metering algorithm implemented by the Traffic Management Center since
1980°s has been developed and incorporated into the simulation module. To facilitate the data
input process for the expanded simulation features, the enhancement of the existing DOS-based
user interface was initially tried. However, it was soon found out that it would be very difficult
to modify the existing user interface because of the limitations in the DOS-based programming
environment. As a result, a new Windows-based user interface was developed using the Delphi
software as the development tool kit. The new user interface was developed as a full Windows-

based application and most of the data input process could be done without exiting the main

81

Kwon, et.al.

menu screen. The demand data conversion module that extracts the traffic data from the raw
detector data file and converts them into the traffic demand data for simulation was also
developed as the first step to integrate simulation and data management. The preliminary study
to automatically estimate the flow-density relationships for a given section of a freeway with real
traffic data was also performed and a framework for an optimal calibration process for the flow-
density relationships was developed using a non-linear optimization routine.

A number of further research needs have been identified. First, the software developed
from this research needs to be debugged and tested with various realistic cases. The budget and
time limitations in this research did not allow to perform an extensive testing and debugging of
the software. Further, the screen design of the new user interface can be improved with the
feedback from the traffic engineers. Secondly, the traffic models developed and incorporated
into the simulation module need to be continuously tested and enhanced with the real traffic data
from various traffic and weather conditions. The flow-density relationships of the various
segment types under the different traffic and weather conditions need to be studied and a base set
of default relationships can be developed. Finally, an efficient traffic database that can store and
manage the traffic data from the existing detectors needs to be developed, so that the user
interface can directly extract the traffic data from the database and create the demand data
necessary for simulation. Developing an integrated system where evaluation of alternative
operational strategies can be performed with efficient interaction between simulation and
database modules is of critical importance in improving traffic operations and management under

dynamically changing traffic environment.

82

Kwon, et.al.

BIBLIOGRAPHY

Michalopoulos, Panos and Kwon, Eil et. al. Enhancements of the KRONOS simulation package
for geometric design, planning, operations and traffic management in freeway
networks/corridors, Phase I, Final Report prepared for Minnesota Department of Transportation,
University of Minnesota, March 1993.

Michalopoulos, Panos and Kwon, Eil and Kang, J. Enhancements and field testing of a dynamic
freeway simulation program. Transportation Research Record 1320, National Research Council,

pp. 203-215, 1991.

Kwon, Eil, Michalopoulos, Panos, et. al. Enhancements of the KRONOS simulation package for
geometric design, planning, operations and traffic management in freeway networks/corridors,
Phase II, Final Report prepared for Minnesota Department of Transportation, University of
Minnesota, 1995.

May, Adolf. Traffic flow fundamentals, Prentice Hall, 1990.

Lax, P. Weak solution of non-linear hyperbolic equation and their numerical computations,
Comm. Pure. Appl. Math. 7, pp. 159-193, 1954.

Lau, Rich, Minnesota Traffic Responsive ramp metering algorithm, Internal documentation,
1997.

Borland International Inc., Boralnd Delphi for Windows 95 and Windows NT, version 2.0,

Borland International Inc. 1996.

Cremer, M., and Papageorgiou, M., "Parameter Identification for a Traffic Flow Model" , Brief
paper, Automatica.

J. L. Kuester, M.H. Joe, "Optimization Techniques with Fortran". McGraw-Hill Book Company

M.J. Box "A new method of constrained optimization and a comparison with other methods",
Comput. J., 1975.

83

